

Pacific Reef Fisheries Pty Ltd

Alva Beach Prawn Farm - Environmental Impact Monitoring Program

March 2019

Document Control

Environmental Impact Monitoring Report - Spring 2018

Project Ref: JW181167

Document Title Environmental Impact Monitoring Report – Spring 2018

Client Name Pacific Reef Fisheries

Project Manager Nicholas Baker B.Sc CEnvP

www.wildenvironmental.com

Milford Baker Pty Ltd - Trading as Wild Environmental Consultants

Cite as:

Wild Environmental Consultants, 2018, Environmental Impact Monitoring Report – Spring 2018, Alva Beach Prawn Farm, Alva Beach, prepared by Wild Environmental Consultants for Pacific Reef Fisheries.

Copyright:

This publication is protected by the *Copyright Act 1968*. The concepts and information contained in this document are the property of Milford Baker Pty Ltd. Use or copying of this document in whole or in part without the written consent of Milford Baker Pty Ltd constitutes an infringement of copyright.

Disclaimer

This report has been prepared by Wild Environmental Consultants on behalf of and for the exclusive use of Milford Baker Pty Ltd's Client, and is subject to and issued in connection with the provisions of the agreement between Milford Baker Pty Ltd and its Client.

While reasonable effort has been made to ensure that the contents of this publication are factually correct, Milford Baker Pty Ltd does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use or, or reliance on, the contents of this publication.

Document history and status

Revision	Date	Description	Ву	Review
0.1	12/03/2019	V0.1	Matthew Ayre	Scott Hayes-Stanley
0.2	13/03/2019	V0.2	Matthew Ayre	Scott Hayes-Stanley
1.0	13/03/2019	V1.0	Matthew Ayre	Nicholas Baker
2.0	29/03/2019	V2.0	Matthew Ayre	Scott Hayes – Stanley
2.1	05/04/2019	V2.1	Matthew Ayre	Scott Hayes Stanley

Approval for Issue

Name and position	Signature	Date
Nicholas Baker, Director	Ngal	29/03/2019

Permits and approvals

Wild Environmental Consultants operate in accordance with the following permits and approvals:

Scientific Use Registration Certificate (*Animal Care and Protection Act 2001*) – Registration Number 600

Scientific Purposes Permit (*Nature Conservation (Administration) Regulation 2006*) – Permit number WISP17791316

Animal Ethics Approval (Animal Ethics Committee) – AEC Application Reference Number CA 2016/08/997

Marine Parks Permit (*Great Barrier Reef Marine Park Regulations 1983* and *Marine Park Regulation 2006*) – G16/38539.1

Wildlife Authority (Rehabilitation Permit) (*Nature Conservation (Administration) Regulation 2017 – WA0002733*Wildlife Authority (Damage Mitigation Permit) (*Nature Conservation (Administration) Regulation 2017 – WA0005146*

Pacific Reef Fisheries Pty Ltd – Alva Beach

Contents

1. Int	troduction	5
1.1	Aims and Objectives	5
1.2	Project description	6
2. Me	ethodology	9
2.1	Sampling Locations	g
2.2	Sample Collection	C
2.3	Water Quality	
2.4	Sediments	
3. Re	esults and Discussion	
3.1	Water Quality	
3.2	Sediments	22
3.3	Total Organic Carbon	23
3.4	Macroinvertebrates	24
4. Co	onclusions and Recommendations	27
Appen	ndix A – Particle Size Distribution Analysis	28
	Figures	
_	1: Project Location	
Ū	2. Project layout.	
•	3. Sampling Locations	
Figure 4	4. Time series plot of pH at EIMP monitoring sites for January to December 2018	15
•	5. Boxplot of pH at EIMP monitoring sites for January to December 2018	
Figure 6	6. Time series plot of EC at EIMP monitoring sites for January to December 2018	16
Figure 7	7.Boxplot of EC at EIMP monitoring sites for January to December 2018	16
Figure 8	8. Time series plot of DO at EIMP monitoring sites for January to December 2018	17
Figure 9	9. Boxplot of DO at EIMP monitoring sites for January to December 2018	17
Figure '	10. Time series plot of TSS at EIMP monitoring sites for January to December 2018	18
Figure '	11. Boxplot of TSS at EIMP monitoring sites for January to December 2018	18
Figure '	12. Time series plot of Turbidity at EIMP monitoring sites for January to December 2018	19
Figure '	13. Boxplot of Turbidity at EIMP monitoring sites for January to December 2018	19

0
U
1
1
9
2
3
2
2
3
6

Pacific Reef Fisheries Pty Ltd – Alva Beach

1. Introduction

Wild Environmental Consultants (Wild Environmental) have been engaged by Pacific Reef Fisheries (Australia) Pty Ltd (PRF) to undertake and fulfil requirements of the revised Environmental Impact Monitoring Program (EIMP) at Alva Beach Aquaculture Farm (the Project), prepared by Gassman Development Perspectives in November 2013.

1.1 Aims and Objectives

The EIMP seeks to determine and understand the extent and concentration of potential impacts relating to the operation of the Project so as to ensure that impacts to receiving environmental values surrounding the Project are minimised. This EIMP report is prepared in fulfilment of Environmental Authority EPPR00864913, Condition SMR12, being:

"The holder of this environmental authority must develop and undertake an Environmental Impact Monitoring Program, in relevant creeks and along the western shoreline of the Pacific Ocean adjacent to the licensed premises, to determine:

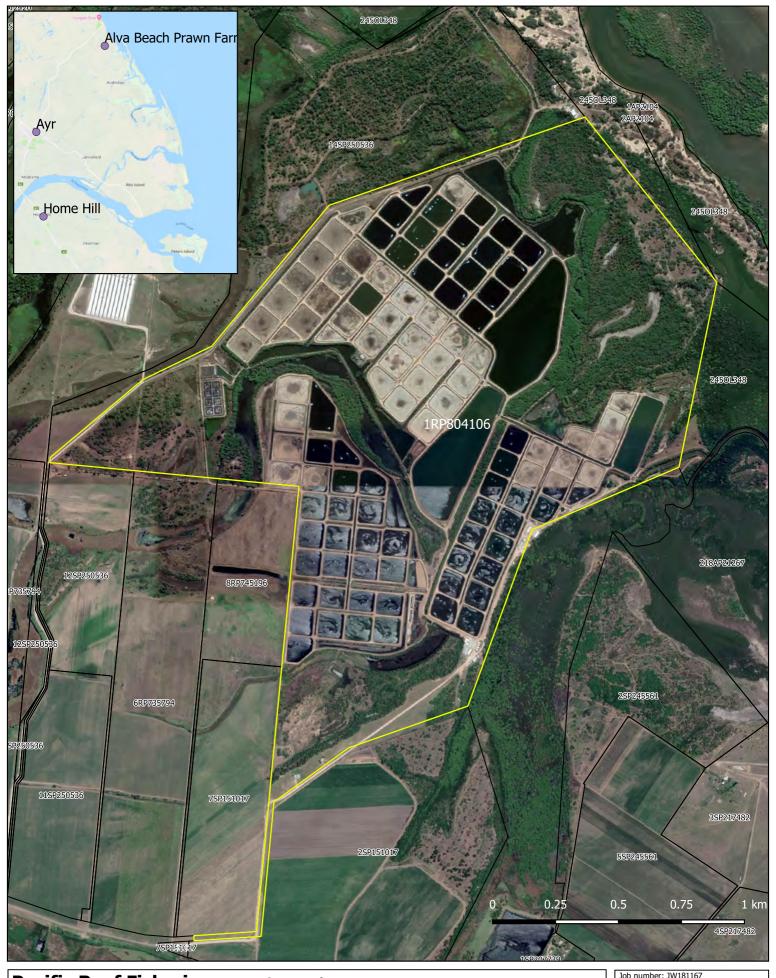
- presence of water quality disturbances; and
- any changes to representative natural biological communities, with an 80% certainty of detecting any such changes should any be present."

Condition SMR15 includes a condition requiring an annual return to be made to the administering authority. On that basis, this report summarises the findings of the EIMP for inclusion in the Annual Return.

1.1.1 Objectives of the EIMP Report

The objective of the EIMP design report is to document protocols for monitoring, identifying and describing potential impacts arising from aquaculture operations associated with the Project. Specifically, the objectives of the EIMP are to:

- identify environmental values of waterways within the receiving environments and determine the water quality objectives for the protection and enhancement of those Environmental Values (EVs); and
- understand potential impacts of the Project on:
 - benthos:
 - sediments; and
 - water quality.


Pacific Reef Fisheries Pty Ltd – Alva Beach

Note: Monitoring of mangroves is undertaken biennially (every second year) and was completed in 2017. Monitoring of mangroves has not been included in this report.

1.2 Project description

The Alva Beach Aquaculture Farm is located on Trent Road, Alva Beach, approximately 15 km east of Ayr, Queensland. The Farm includes 105 operational aquaculture ponds covering approximately 98 ha. The farm produces both *Penaeus monodon* (Black tiger prawn) and *Rachycentron canadum* (Cobia). The farm includes a processing facility, settlement / treatment ponds and seven (7) hectares of constructed mangrove wetlands, designed to reduce contaminants prior to release from Release Point W1. Figure 2 details the Project layout.

Pacific Reef Fisheries Pty Ltd

Alva Beach - Environmental Impact **Monitoring Program** Figure 1: Project Location

Legend

Localities

Project Boundary

Property Boundaries

Job number: JW181167 Coordinate reference system: GDA 94 Date 13 March 2019

Pacific Reef Fisheries Pty Ltd

Alva Beach - Environmental Impact Monitoring Program Figure 2: Project Layout

Legend

Aquiculture Ponds Treatment Pond Nursery **Project Boundary**

Reservoir

Job number: JW181167 Coordinate reference system: GDA 94 Date 14 March 2019

Pacific Reef Fisheries Pty Ltd – Alva Beach

2. Methodology

2.1 Sampling Locations

Eight (8) sampling locations are specified for the Project as detailed in Table 1 and Figure 3. Monitoring locations accessed correspond to sediment and macroinvertebrate sampling.

Table 1. Sampling locations and descriptions.

Site			Description
Α	147.4899	-19.4662	
	147.4898	-19.4662	Discharge point into Little Alva Creek.
	147.4897	-19.4661	
В	147.4916	-19.4651	
	147.4915	-19.4651	500m downstream in Little Alva Creek.
	147.4914	-19.4647	
E	147.487	-19.4637	
	147.4869	-19.4636	Location in Alva Creek corresponding with B.
	147.4868	-19.4634	
Н	147.49	-19.4616	
	147.4902	-19.4613	Location in Alva Creek corresponding with A.
	147.4906	-19.4611	

2.2 Sample Collection

All samples were collected in accordance with the Department of Environment and Science (DES) Monitoring and Sampling Manual 2018¹ and. Sediment samples collected were submitted to National Association of Testing Authorities (NATA) accredited laboratory ALS Environmental for analysis. Benthos samples (i.e. macro-invertebrates) were preserved in ethanol and placed in sample storage for identification.

Department of Environment and Science. 2018. Monitoring and Sampling Manual: Environmental Protection (Water) Policy. Brisbane: Department of Environment and Science Government.

Pacific Reef Fisheries Pty Ltd

Alva Beach - Environmental Impact Monitoring Program

Figure 3: Monitoring Locations

Legend

Monitoring Locations

Project boundary

Job number: JW181167 Coordinate reference system: GDA 94 Date 13 March 2019

Pacific Reef Fisheries Pty Ltd – Alva Beach

2.3 Water Quality

Water quality monitoring is conducted by Pacific Reef Fisheries on a monthly basis in accordance with Schedule 2 – Monitoring, Table 1 of the EA. Monitoring locations sampled during the reporting period include locations A, B, E and H. Water quality parameters monitored under this EIMP include:

- temperature;
- pH;
- dissolved oxygen;
- salinity (referred to as electrical conductivity);
- total suspended solids;
- turbidity;
- total nitrogen; and
- total phosphorus.

Results of monitoring are summarised in Section 3.1.

2.4 Sediments

Sediment monitoring is conducted on an annual basis at sites B, C, E and F to determine macroinvertebrate species composition and abundance, total organic carbon and particle size. Three subsamples were acquired across the stream channel at monitoring locations B, C, E and F (see Figure 3).

2.4.1 Sediment and macroinvertebrate sampling

Analysis of sediments relates to physical and chemical characteristics of the sediments, as well as the presence of any macroinvertebrate species. The approach taken is generally in accordance with the Approved EIMP prepared by Gassman Development Prospectives. The method of selecting sampling locations was identified within the approved EIMP.

Sampling is undertaken using a stainless steel Ponar grab dredge, or a handheld corer, depending on the anticipated depth of material and practical consideration of achieving core penetration, retention, and depth of water overlying the sediments to be sampled.

Pacific Reef Fisheries Pty Ltd - Alva Beach

The sediment sampling is led by a suitably qualified environmental professional. The vessel used as the platform for the sampling is provided by PRF and is suitable for accessing the sampling locations. All working areas of the vessel were thoroughly checked, cleaned and prepared for sediment sampling activities prior to each day's sampling. Photographs are taken of grabs from each of the sampling locations.

Once samples are logged and photographed, they are placed/extruded into large stainless steel mixing bowls and homogenised using gloved hands (powderless latex gloves) or small stainless steel sample scoop.

Samples are stored in specific containers, supplied by the laboratory for the required analyses. A table of specific sampling containers to be used to contain samples is provided in Table 2. Sample containers are appropriately labelled using indelible ink to write the sample location number and date on both the label and lid of the container and immediately stored in refrigerators or eskies with ice packs. Samples remain in refrigerated condition until dispatched to the analytical testing laboratory, where they are maintained at 4°C.

All sample material held at the analytical laboratory is typically retained for one month (or longer by request in the case of hold material) from the date of submission for repeat/verification testing if required.

Table 2: Sample containers

Analyte	Containers per sample
TOC, Trace metals, nutrients, hydrocarbons and	1 x 250 ml solvent washed, acid rinsed glass jar
organics	with a Teflon lined lid
Particle size	1 x plastic bag to hold a minimum of 500 g sample
Hold samples	1 to 3 x 250 ml solvent washed, acid rinsed glass
	jar with a Teflon lined lid

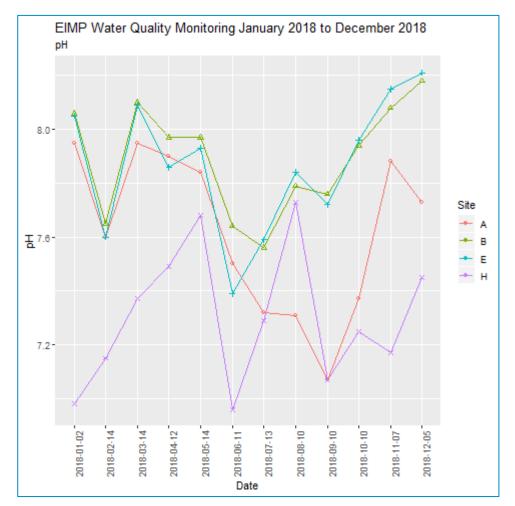
3. Results and Discussion

3.1 Water Quality

Three sub samples were collected at EIMP monitoring locations A, B, E, and H with laboratory analytes selected in accordance with Section 2.3. Results for the EIMP reporting period are summarised in Table 3 and detailed in Figure 4 to Figure 17.

Table 3: Water Quality Results

	Temp	рН	DO	Sal	TSS(mg/L)	Turbidity	TN(mg/L)	TP(mg/L)
Α								
Min	18.8	7.07	2.23	25.25	7.00	5.10	0.17	0.02
Max	29.16	7.95	6.14	39.56	30.00	20.5	2.00	0.27
Mean	24.63	7.62	4.56	35.70	14.58	10.23	0.75	0.11
Median	25.40	7.67	4.96	36.67	13.50	7.75	0.55	0.105
В								
Min	18.90	7.56	5.60	26.17	1.00	2.20	0.10	0.02
Max	29.40	8.18	7.79	36.82	45.00	23.80	0.52	0.10
Mean	24.91	7.89	6.39	35.15	15.67	8.99	0.21	0.07
Median	25.85	7.95	6.48	36.38	13.50	6.20	0.20	0.08
E								
Min	18.8	7.39	5.83	26.79	1	2.7	0.1	0.02
Max	30.1	8.22	7.05	36.73	52	35.5	0.31	0.1
Mean	26.23	7.917667	6.495	34.97433	16.66667	10.63333	0.161818	0.054444
Median	27.2	7.96	6.755	36.365	13	5.8	0.15	0.04
н								
Min	18.3	6.64	1.83	15.86	8	3.8	0.16	0.02
Max	30.3	7.83	6.39	42.02	25	15.4	1.1	0.32
Mean	25.52	7.295	4.044667	34.911	15.4	9.9	0.539167	0.131
Median	26.05	7.29	3.945	38.715	14	9.75	0.48	0.1


Pacific Reef Fisheries Pty Ltd – Alva Beach

Monitoring locations B and E are located at the mouth of tributaries with which flow into Kaliama / Little Alva Creek. Water monitoring at these two locations indicate that for the majority of monitoring events, the physical and chemical parameter results are similar. The exception to this was during July 2018, when Suspended Solids and Turbidity became elevated. Physical and chemical parameters at location H are not similar to locations A, B or E. In particular, between January and June 2018, nutrient concentrations were elevated when compared to other monitoring locations.

It is noted that monitoring location A is the discharge point for the aquaculture facility. Electrical conductivity, turbidity, and suspended solids concentrations were similar to monitoring locations B and E. The majority of parameters were varied in comparison to other monitoring locations. In particular, concentrations of nutrients became elevated during October – November 2018.

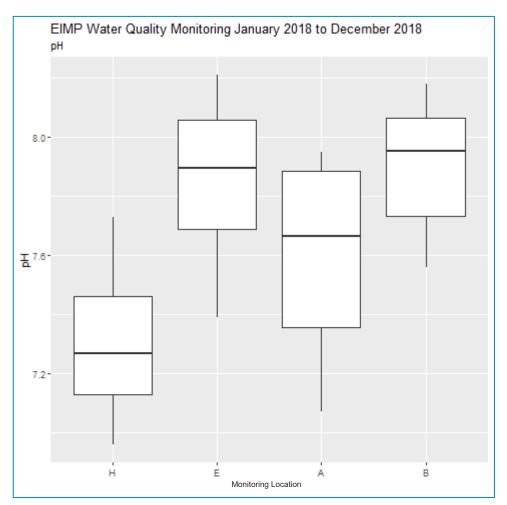
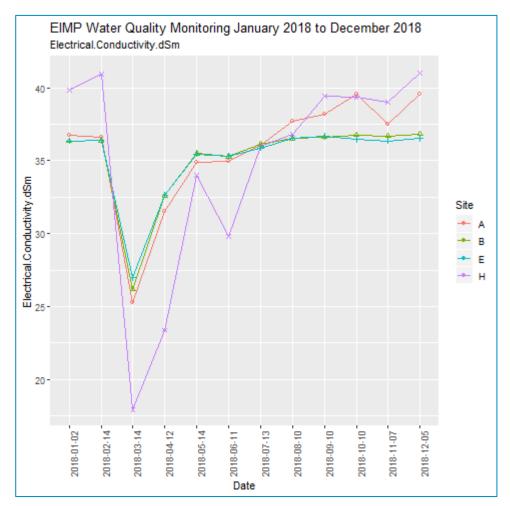



Figure 4. Time series plot of pH at EIMP monitoring sites for January to December 2018. Figure 5. Boxplot of pH at EIMP monitoring sites for January to December 2018.

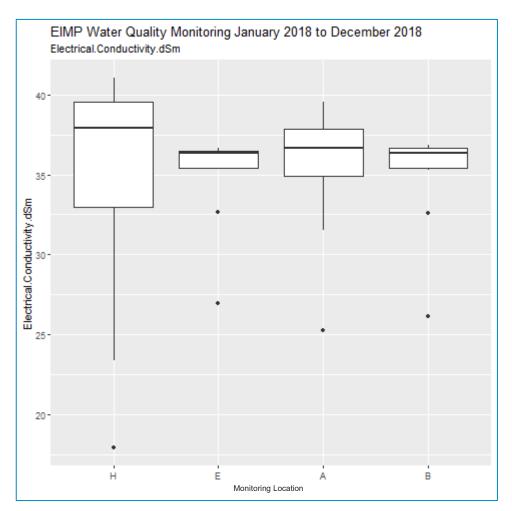
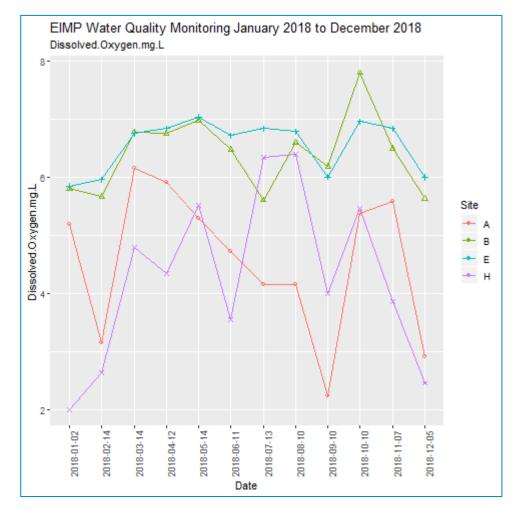



Figure 6. Time series plot of EC at EIMP monitoring sites for January to December 2018. Figure 7.Boxplot of EC at EIMP monitoring sites for January to December 2018.

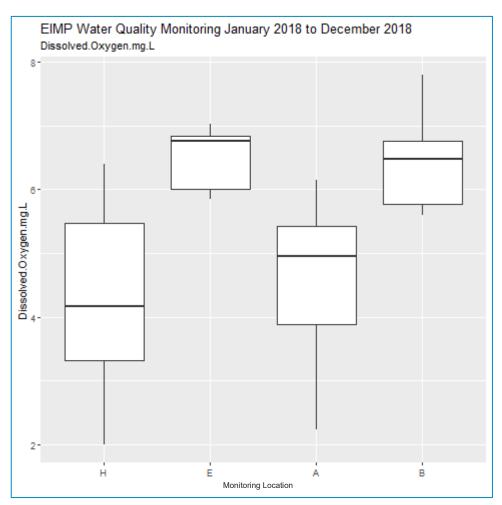
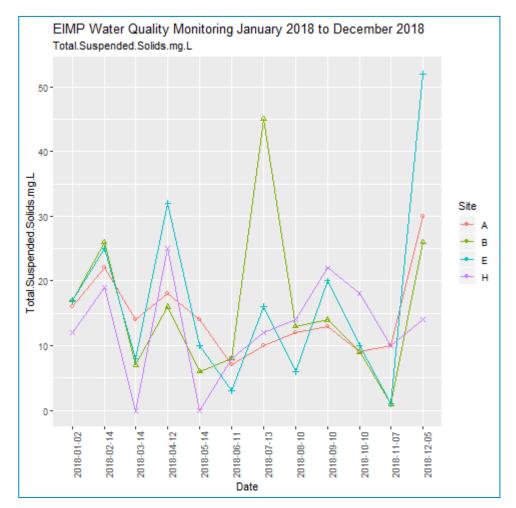
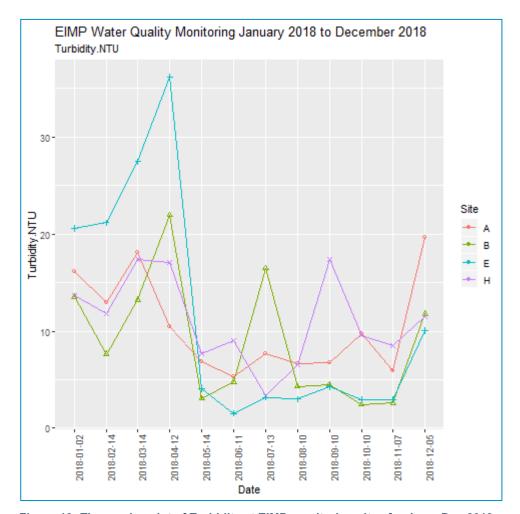



Figure 8. Time series plot of DO at EIMP monitoring sites for January to December 2018. Figure 9. Boxplot of DO at EIMP monitoring sites for January to December 2018.



EIMP Water Quality Monitoring January 2018 to December 2018 Total.Suspended.Solids.mg.L 50 -40 -Total.Suspended.Solids.mg.L 10-0-В Monitoring Location

Figure 10. Time series plot of TSS at EIMP monitoring sites for January to Dec 2018.

Figure 11. Boxplot of TSS at EIMP monitoring sites for January to December 2018.

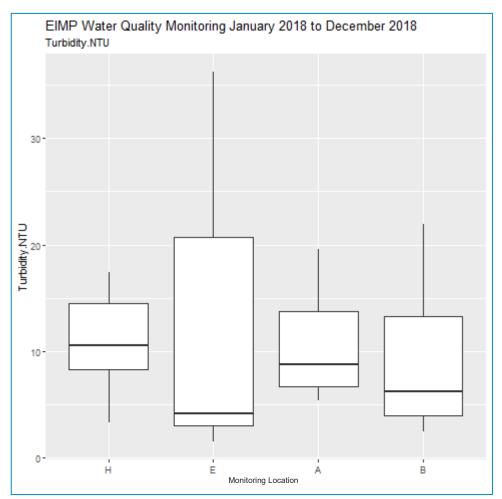


Figure 12. Time series plot of Turbidity at EIMP monitoring sites for Jan – Dec 2018.

Figure 13. Boxplot of Turbidity at EIMP monitoring sites for January to December 2018.

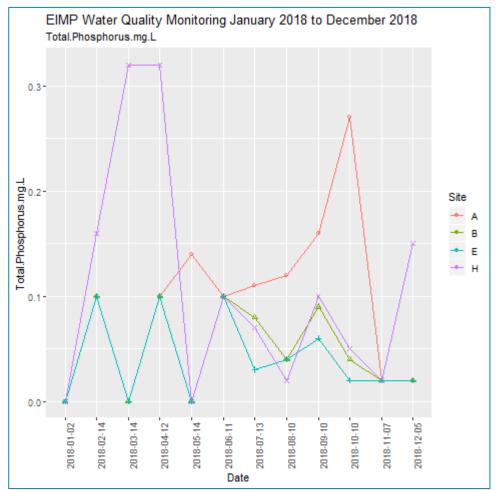


Figure 14. Time series plot - TP at EIMP monitoring sites for Jan- Dec 2018.

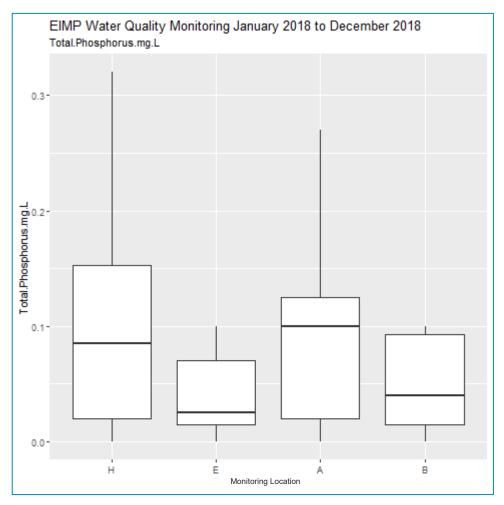
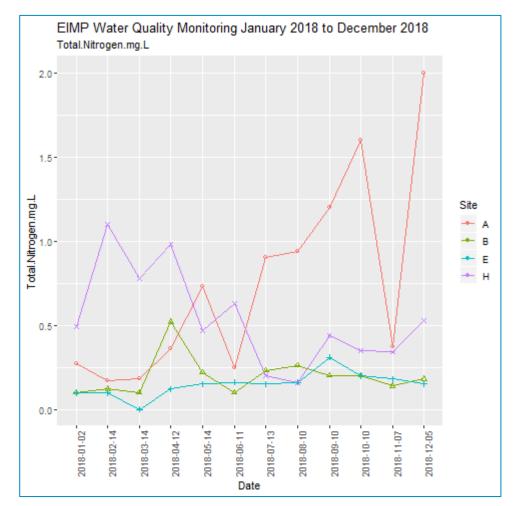



Figure 15. Boxplot of Total Phosphorus at EIMP monitoring sites for Jan - Dec 2018.

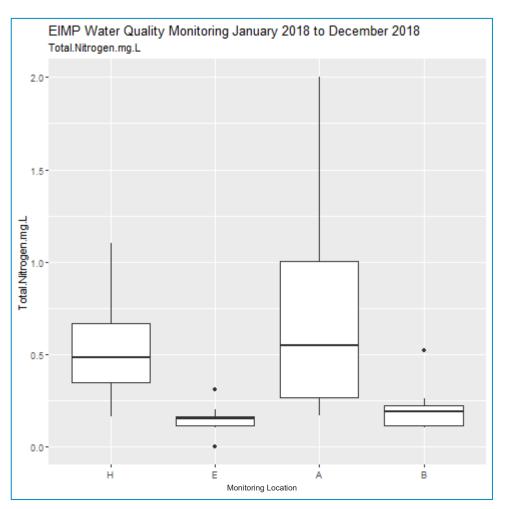


Figure 16. Time series plot of Total Nitrogen at EIMP monitoring sites for Jan-Dec 2018. Figure 17. Boxplot of Total Nitrogen at EIMP monitoring sites for Jan-Dec 2018.

Pacific Reef Fisheries Pty Ltd – Alva Beach

3.2 Sediments

3.2.1 Particle Size Distribution

Three sub samples were collected at EIMP monitoring locations B, C, E and F with laboratory analytes selected in accordance with Section 2.3. Locations of sub-samples are provided in Table 4 and particle distribution results are provided in Table 5. Laboratory analysis is expressed as the percentage of material retained at each size fraction. Sediments sampled were dominated by sand to clay sand.

Table 4. Locations of sediment sub-sampling.

Site ID	Latitude	Longitude
B-1	147.4899	-19.4662
B-2	147.4898	-19.4662
B-3	147.4897	-19.4661
C-1	147.4916	-19.4651
C-2	147.4915	-19.4651
C-3	147.4914	-19.4647
E-1	147.487	-19.4637
E-2	147.4869	-19.4636
E-3	147.4868	-19.4634
F-1	147.49	-19.4616
F-2	147.4902	-19.4613
F-3	147.4906	-19.4611

Table 5. Particle size distribution results for sediment subsamples.

Particle Size	(%)											
Site ID	SB-1	SB-2	SB-3	SC-1	SC-2	SC-3	SE - 1	SE-2	SE-3	SF-1	SF-2	SF-3
+75μm	94	92	54	99	98	95	98	97	55	99	96	94
+150µm	93	89	46	98	98	92	98	96	40	99	94	88
+300µm	76	69	28	76	86	76	76	65	13	82	70	56
+425μm	46	41	14	35	49	46	40	30	6	40	35	29
+600µm	18	16	5	8	16	17	15	10	2	12	12	11
+1180µm	<1	1	<1	<1	<1	2	2	1	<1	<1	4	4
+2.36mm	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	3	2
+4.75mm	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
+9.5mm	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
+19.0mm	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
+37.5mm	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
+75.0mm	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Description	Sand	Sand	Clayey Sand	Sand	Sand	Sand	Sand	Sand	Clayey Sand	Sand	Sand	Sand

Pacific Reef Fisheries Pty Ltd – Alva Beach

3.3 Total Organic Carbon

Three Total Organic Carbon (TOC) sub samples were collected at monitoring locations B, C, E and F (See Table 4). Results are provided in Table 6.

Table 6: Total Organic Carbon Results

Site ID	TOC %
B-1	0.14
B-2	0.16
B-3	0.67
C-1	0.03
C-2	0.05
C-3	0.09
E-1	0.06
E-2	0.10
E-3	1.04
F-1	0.03
F-2	0.10
F-3	0.11

Across all monitoring locations, the TOC concentrations were similar. The exception to this was subsamples B-3 and E-3, which indicated elevated TOC results compared to the corresponding duplicates.

Pacific Reef Fisheries Pty Ltd – Alva Beach

3.4 Macroinvertebrates

The sampling of macroinvertebrates was conducted at monitoring locations B, C, D and F. The result of Macroinvertebrate sampling and analysis is outlined in Table 7. In summary, analyses indicated the presence of 541 individual specimens from 27 taxa where identified across all monitoring locations.

	SBM_	SBM_	SBM_	SBM_	SBM_ 5	SBM_	SCM_	SCM_	SCM_	SCM_	SCM_ 5	SCM_	SEM_	SEM_	SEM_	SEM_	SEM_ 5	SEM_	SFM_	SFM_ 2	SFM_ 3	SFM_	SFM_5	SFM_	Grand Total
Annelida	1	2	•	_	3	1		2			2	1		2		6	2	1	•		4	11	7	17	67
Polychaeta	1	1	5		3	1		2			2	1		1		6	2	1			4	11	7	16	64
Capitellidae		1	5														2					5	7	9	29
DAMAGED																						0		0	0
Nephtyidae												1				2					1	2		2	8
Nereididae	1							1										1				2		2	7
Orbiniidae											1													3	4
Oweniidae					3	1					1			1		4					3	2			15
Polychaeta_damage d								1																	1
Sipunculiformes		1												1										1	3
Sipunculidae		1												1										1	3
Arthropoda					1						1														2
Aracnida					1																				1
Acarina					1																				1
Pycnogonida											1														1
Pycnogonidae											1														1
Brachiopoda																						2	1	4	7
Lingulata																						2	1	4	7
Lingulidae																						2	1	4	7
Crustacea			0			2	3	3		1	2	1		2	1	4		1	1	3	4	4	3	17	52
Amphipoda								1													1	3		2	7
Aoridae																					1	3		2	6
DAMAGED			_					1																	1
DAMAGED			0																						0
DAMAGED			0													_									0
Decapoda						1	1									4					1				7
Alpheidae																1									1
Diogenidae						4	1									0					1				2
Ocypodidae						1										3		4							4
Isopoda							2	2		1								1	1	3					10
Cirolanidae						4	2	2		1	2	4		•	4			1	1	3	2	1		45	10
Tanaidacea						1					2	1		2	1						2	1	3	15	28
Apseudidae						1					2	1		2	1						2	1	3	15	28
Echinodermata																					2				2
Ophiuroidea Ophiuroidea																					2				2 2
Insecta							1													1	۷				2
Diptera							1													1					2
NA							1													1					2
Mollusca	4	9	19	10	2	3	26	6	16	7	30	14	7	4	5	25	45	2	10	8	18	42	47	43	402
Bivalvia	3			3	2	3	22	6	16	6	30	13	7		4	3	3	2	10	7	14	38	46	40	303
DAMAGED	3		0			0		0		U	0	13	,	0	0	3	J	0	10	•	0	30	0	0	0
DANIAGED			0	U		U		U			U			U	U			U			0		U	J	U

Mactridae	2	4	4	1	2	1	15	4	8	4	16	9	3	2	1	1	1	1	4	5	13	35	38	31	205
Mytilidae			1			1				1	2												3	2	10
Pharidae							2																	1	3
Tellindae	1	4	8	2		1	5	2	8	1	12	4	4	2	3	2	2	1	6	2	1	3	5	6	85
DAMAGED					0																				0
DAMAGED					0																				0
Gastropoda	1	1	6	7		0	4			1		1			1	22	42			1	4	4	1	3	99
Cerithiidae		1	6	6			1								1	12	37					1		2	67
DAMAGED						0											0								0
Gastropod_juvenile																				1					1
Littorinidae										1							1					1	1	1	5
Nassariidae							2					1					1				3	2			9
Naticidae							1									10					1				12
Neritidae	1																2								3
Potamididae				1													1								2
Nemertea								1			2	3											1	2	9
Nemertinea								1			2	3											1	2	9
Nemertinea								1			2	3											1	2	9
Grand Total	5	11	24	10	6	6	30	12	16	8	37	19	7	8	6	35	47	4	11	12	28	59	59	83	543

Table 7: Macroinvertebrate Monitoring Results

Pacific Reef Fisheries Pty Ltd - Alva Beach

4. Conclusions and Recommendations

Monitoring during this EIMP monitoring campaign included the sampling of water, sediments and macroinvertebrates. At monitoring location A the majority of water parameters were varied in comparison to the other monitoring locations (B, E and H). In particular, concentrations of nutrients became elevated during October – November 2018. Sediment sampling indicated that stream substrate was dominated by sand, with clayey sand existing adjacent to stream banks. TOC Concentrations were similar between sampling locations, with the exception of subsamples B-3 and E-3. Macroinvertebrate analysis identified a total of 541 individual macroinvertebrates from 27 Taxa.

Environmental Authority EPPR00864913 Condition SMR12, specifies that an Environmental Impact Monitoring Program was to be developed to determine:

- the presence of water quality disturbance in relation to aquiculture activities; and
- any changes to representative natural biological communities, with an 80% certainty of detecting any such changes should be present.

Determination of water quality disturbance and impact to biological communities with 80% confidence, cannot currently be achieved under the current EIMP design. It is recommended that the EIMP design be updated. The updated EIMP should:

- outline the environmental values;
- provide further detail into monitoring methodologies;
- provide further data interpretations;
- · determine potential for impact against receiving environments and environmental values; and
- provide recommendations of further actions to rectify impacts to the environment (if any).

5. Appendix A - Particle Size Distribution Analysis

CERTIFICATE OF ANALYSIS

Work Order : EB1824478

Client : WILD ENVIRONMENTAL

Contact : Matthew Ayre

Address : Suite 3, 175 Sturt Street PO Box 55

TOWNSVILLE QLD 4810

Telephone : 0744109000

Project : ----

C-O-C number · --

Order number

Sampler : Matthew Ayre, NICHOLAS BAKER

Site : ---

Quote number : EN/222/18

No. of samples received : 7
No. of samples analysed : 7

Page : 1 of 4

Laboratory : Environmental Division Brisbane

Contact : Customer Services EB

Address : 2 Byth Street Stafford QLD Australia 4053

Telephone : +61-7-3243 7222

Date Samples Received : 10-Oct-2018 08:45

Date Analysis Commenced : 17-Oct-2018

Issue Date : 13-Nov-2018 09:52

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ben Felgendrejeris Senior Acid Sulfate Soil Chemist Brisbane Acid Sulphate Soils, Stafford, QLD Satishkumar Trivedi Senior Acid Sulfate Soil Chemist Brisbane Acid Sulphate Soils, Stafford, QLD

Page : 2 of 4
Work Order : EB1824478

Client : WILD ENVIRONMENTAL

Project · --

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

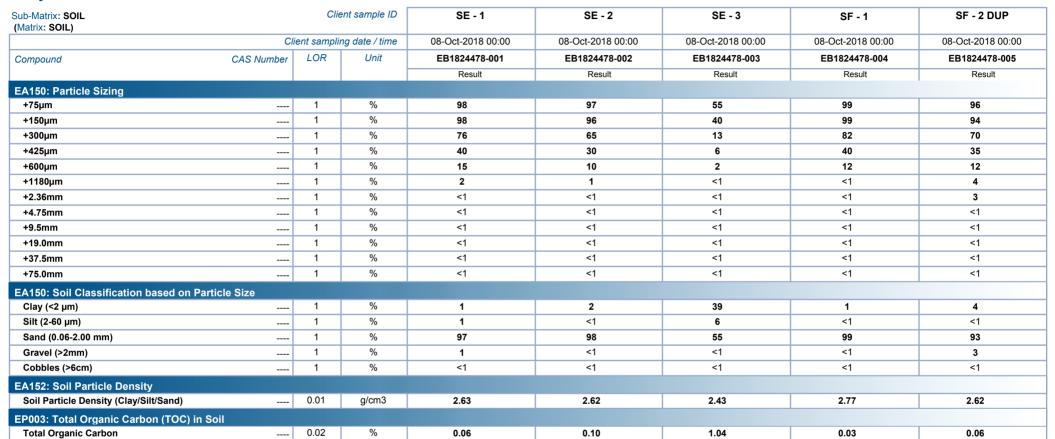
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

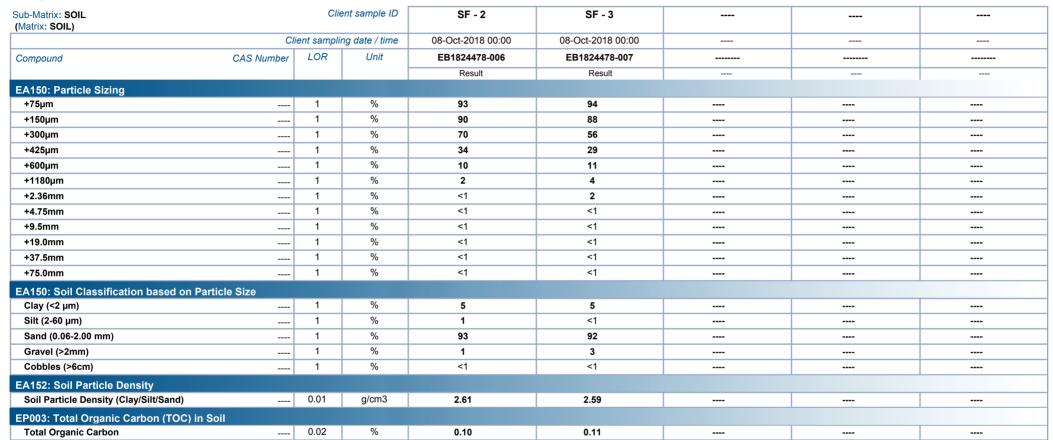

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Page : 3 of 4
Work Order : EB1824478

Client : WILD ENVIRONMENTAL

Project · --

Analytical Results



Page : 4 of 4 Work Order : EB1824478

Client : WILD ENVIRONMENTAL

Project : ---

Analytical Results

CERTIFICATE OF ANALYSIS

Work Order : EB1824517

Client : WILD ENVIRONMENTAL

Contact : MR NICHOLAS BAKER

Address : Suite 3, 175 Sturt Street PO Box 55

TOWNSVILLE QLD 4810

Telephone : --Project : ---

Order number

C-O-C number : ----

Sampler : Matthew Ayre, NICHOLAS BAKER

Site : ---

Quote number : EN/222/18

No. of samples received : 6
No. of samples analysed : 6

Page : 1 of 4

Laboratory : Environmental Division Brisbane

Contact : Customer Services EB

Address : 2 Byth Street Stafford QLD Australia 4053

Telephone : +61-7-3243 7222

Date Samples Received : 11-Oct-2018 09:30

Date Analysis Commenced : 17-Oct-2018

Issue Date : 13-Nov-2018 09:52

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ben Felgendrejeris Senior Acid Sulfate Soil Chemist Brisbane Acid Sulphate Soils, Stafford, QLD Satishkumar Trivedi Senior Acid Sulfate Soil Chemist Brisbane Acid Sulphate Soils, Stafford, QLD

Page : 2 of 4
Work Order : EB1824517

Client : WILD ENVIRONMENTAL

Project · --

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

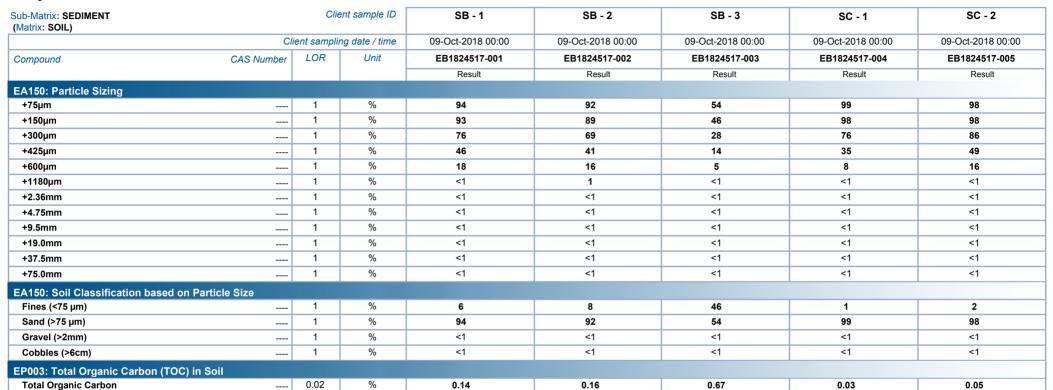
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

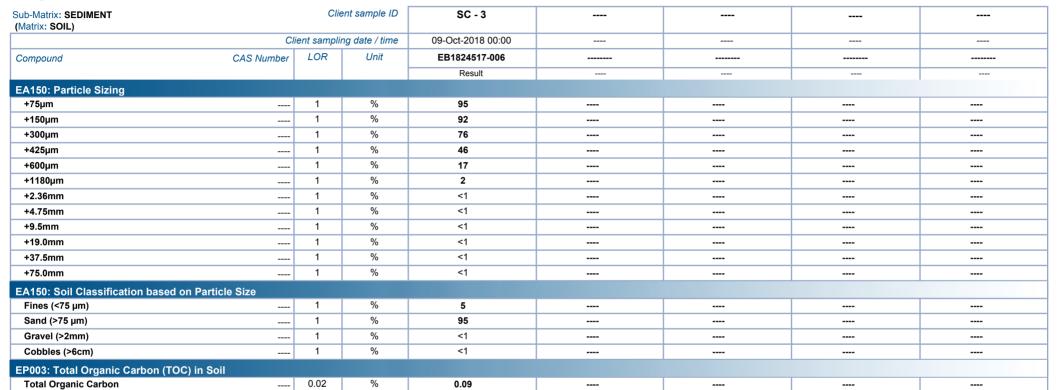

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Page : 3 of 4
Work Order : EB1824517

Client : WILD ENVIRONMENTAL

Project : --

Analytical Results



Page : 4 of 4 Work Order : EB1824517

Client : WILD ENVIRONMENTAL

Project : ---

Analytical Results

